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Tolman-Bondi collapse in scalar-tensor theories as a probe of gravitational memory
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In cosmological models with a varying gravitational constant, it is not clear whether primordial black holes
preserve the value d& at their formation epoch. We investigate this question by using the Tolman-Bondi
model to study the evolution of a background scalar field when a black hole forms from the collapse of dust in
a flat Friedmann universe. Providing the back reaction of the scalar field on the metric can be neglected, we
find that the value of the scalar field at the event horizon very quickly assumes the background cosmological
value. This suggests that there is very little gravitational memory.
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I. INTRODUCTION where the black hole forces the scalar field to remain con-
stant in some local region around it. The second scenario
Scalar-tensofST) theories of gravity provide a natural Barrow called gravitational memory because the black hole
alternative to general relativityGR). They describe gravity would locally preserve the value of the scalar field from
with not only a metricg,, but also a scalar fiel¢p. Deriva-  when it formed. Barrow and Caf6] studied the evolution of
tives of ¢ appear as source terms in the field equations@nd primordial black holes for these scenarios and found that
itself satisfies a wave equation. The strength of the gravitaeither case results in a significant deviation from the usual
tional coupling is determined by the functian(¢), where  GR analysis. They considered ST theories, whéigp)
GR is recovered in the limits—~ andw™3(dw/d$)—0.  «4~1 as in the Brans-Dicke case. Singeincreases with
ST .theories can also .be_regarded as being equivalent 'ifbsmological time, this implies thaB(¢) decreases, so
GR with a varying gravitational “constantG. The most  p|ack holes would take longer to radiate away their mass via
simple example of such a ST theory is Brans-Dicke theory,, king evaporation than in the GR case. In both scenarios

; -1
El]l’ dwhere9(¢)t|shconstak?t anﬁmg 5 0 Ongevgr, weﬂz}ak the black holes form when gravity is stronger, so the rate of
c;e : ?xpe][|menGsR ave s I:)V\I/:n a 2] a}nSTs& e evaporation is less, but in scenaliB) the strength never
eviation from IS smafl. For more genera €OMNeSyecreases and so the lifetime is even longer.

;v:\gli ;Uatlsegr?'terc(t)'%Sézméc;tc:ts)sggsast{?)lr?stng; W:SCthjhcgor'e The above scenarios are the two extremes and the reality
ler ' vall W su €% probably somewhere in between. Two more general sce-

to greatly deviate from GR in t.he early universe. - narios have been proposé¢d]. In scenario(C) the scalar
There has been a renewed interest in ST theories in receflq evolves faster at the event horiz¢EH) than at the

years due to the effective low energy actions of string theory ~ _ : .
involving one or more scalar fields. These scalar fields enteP@rticle horizon(PH), so ¢gn> ey . Eventually the black
the field equations in much the same way as the scalar fielfole must reach a stage whepe,= ¢py, but this does not
in ST theorieg3]. Also, the increasing popularity of inflation Nnecessarily mean the scalar field is homogeneous since there
and quintessence suggests that scalar fields might need to &euld be some lag between the asymptotic and local in-
incorporated into cosmological models. crease. In scenari®), the scalar field is evolving locally but
The purpose of this paper is to study the effect of anat a slower rate than asymptotically, #@,< ¢py. There is
evolving scalar field on the formation and evolution of astill some gravitational memory but not in the strict sense of
primordial black hole. In an asymptotically flat spacetime itscenariaB). In this scenario the gradient of the scalar field is
is well known that a black hole radiates away any inhomo-ncreasing but one would expect there to be some limit, due
geneities in the scalar field until it becomes a stationary soto the influx of scalar gravitational waves.
lution with constant¢ [4]. This is a consequence of the  Gravitational memory for black holes which are small
famous “no hair” theorem. However, in ST cosmological compared to the cosmological scdlee., the particle hori-
models the scalar field is evolving with time and this would zon) has already been investigated by JacobginIn this
modify how the black hole evolves during its lifetime. case, the scalar field evolution can be considered as an
Barrow[5] was the first to examine this problem. He con- asymptotic perturbation to the Schwarzschild metric and the
sidered the two extreme possibilities: scen&A®, where the  end-state of scenari) applies, with the lag being found to
scalar field evolves everywhere homogeneously in the samee small. This suggests that gravitational memory is virtually
way as the cosmological background; and scen@Bg nonexistent. However, this approximation may not apply for
primordial black holes since these can have a size compa-
rable to the particle horizon at formatidf]. It is still not
*Electronic address: harada@gravity.phys.waseda.ac.jp clear what would happen in this case. Therefore another way
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of investigating gravitational memory, without assuming thatapproximation used, gravitational memory is not possible. It
the black hole is small, is needed. remains to be seen whether the back reaction of the scalar

In GR there have been several attempts to study analytitield could alter this conclusion.
solutions which represent black holes within a cosmological In Sec. Il we describe ST theories in more detail and
background. The earliest used the Einstein-Straus solutio@ierive the field equations for the approximation in which the
[10], which matches a Schwarzschild interior to a Friedmanrgffect of the scalar field on the m_etric is_ neglected. In Sec. Ili
exterior, and this approach has also been used to study grayk€ transform the Tolman-Bondi solution into null coordi-
tational memonyf11]. However, in most circumstances it can Nates, giving the equations necessary to apply the character-
be shown[12] that such a matching is only possible if the istic method. In St_ac. IV we specify the model giving rise to
scalar field is constant, which just gives the GR solution Plack hole fo_rmat|on_ We present thg numerical results in
Another method used the McVittie metrfd3], but it has S€c. V and discuss their implications in Sec. VI.
been shown14] that this has a scalar curvature singularity at
the event horizon.

A more successful method uses the Tolman-Bondi metric
[15] to represent the collapse of dust to a black hole in an For scalar-tensor theories of gravity wiB(¢)= ¢! the
asymptotically Friedmann background. However, this onlyfield equations are
works for dust and cannot in general be applied to ST theo-
ries due to the derivatives of the scalar field appearing as
source terms in the field equations. In this paper we over- 87 w(P) 1 c
come this problem by assuming that the effect of the scalar Gap= ?Tab“L e ’?ad"?agﬁ_igab‘é be
field on the spacetime is small compared to that of the mat-
ter. This means that we can use the usual Einstein field equa-
tions to generate the spacetime and then use the wave equa-
tion for the scalar field to determine its evolution. This
approximation was used by Haraéaal. [16] to calculate
the scalar gravitational radiation emitted by Oppenheimer- . 87 T—(dw/dp)i°dd.P
Snyder collapse in ST theory. Jacobson also uses this ap- VEVep= 3+20() ' 2.2
proximation when calculating the effect of an evolving scalar
field in Schwarzschild spacetime. We note, however, that
self-consistent numerical calculations of spherical gravitawhere T,y is the usual energy-momentum tensarjs its
tional collapse in ST theory in asymptotically flat spacetime,trace, and we have set=1. In Brans-Dicke theory Eq2.1)
in which the effect of the scalar field on the spacetime isremains unchanged bdw/d¢=0 in Eq.(2.2). These equa-
fully incorporated, have been considered by previous authoréons are expressed in the Jordan frame but ST theories can
[17,18. also be expressed in a conformal frame known as the Ein-

If one makes this approximation to investigate gravita-stein frame. The Einstein frame is related to the Jordan frame
tional collapse in a Tolman-Bondi spacetime, the solution idy the transformation
specified by two arbitrary functions: the energy and mass
functions. To represent collapse in a Friedmann background, — — o
the energy function has to be negative within some rarjus Jab=(Go®)9ap= Tan=(Go®) "Tap, 2.3
and zero outside it. This results in the eventual gravitational

collapse of all the matter withing, while the matter outside  \hereG, is the present value of the gravitational “constant”
ro expands forever as in a flat Friedmann model. In choosings measured in solar system experiments. It is called the
the mass function, or equivalently the density perturbationgjnstein frame because it can be expressed as GR with a

we adopt the “compensated” model. This means that thescalar field. However, the Jordan frame will be used through-
overdense region in the center is surrounded by an undegyt this paper.

dense region outside, so that the total mass at infinity is |5 GR the Tolman-Bondi solution is given by
unaffected.

We solve the field equations numerically using the char-
acteristic method. This method was first applied to an inho-  ds*= —dt*+A%(t,r)dr?+R*(t,r)[d 6+ sin® 6dy?],
mogeneous and dynamical background spacetime by Iguchi (2.4
et al.[19]. The characteristic method integrates over null hy-
persurfaces with the event horizon as a boundary. This meang,qrer is the comoving radial coordinate afiis given by
that one never needs to calculate anything inside the black
hole, thereby avoiding any numerical problems associated
with singularities. The output of the code shows the spatial R® fR
and temporal variation of the scalar field. The figures pro- t—ty(r)= \EG( - f)
duced show that the initial collapse results in a large gradient
in the scalar field. However, as time increases, the scalar field
becomes almost homogeneous. This suggests that, within tirdere G(y) is a positive function given by

II. BASIC EQUATIONS

+ = (VaVod =~ gapV Ved), (2.)

| -

(2.5
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( arcsinyy \1-y m—arcsinfy  1-y 0<v<1
Y32 Ty or y3? + y (O<y=1),
2
G(y)={ 3 (y=0), (2.6)
—arcsinh/—y 1-y (y<0)
{ (_y)3/2 y
|
ts(r) is a constant of integration, afé(r)=2Gom(r) with . (AR)'. 1 1 2\
m(r) being the mass within radius A is given b ve =—¢- +—¢"+ —(—) "
(r) g g y [VVelrgp=—¢ AR? é A2¢ AR\ A b
AZ _ R,(trr)z 2 (213
(tr)= FEIE 2.7
Ill. CHARACTERISTIC METHOD
andR satisfies The last equation needs to be rewritten in terms of a null
_ F(r) coordinate suitable for the characteristic method. The re-
R2(t,r)= T+f(r). (2.8 tarded time coordinateu is introduced such thatu
= constant is an outgoing null geodesic. In the original coor-
The density of the dusi is given by dinates the outgoing null geodesic is given by
F' SN (3.1)
= . 2.9 dar ™ :
P gnRR 29
. it
In the above, a dot denotds and a prime denote . S0 we can write
There are two arbitrary functions in this solution: the U’
mass functioom(r) and the energy functiof(r). Investigat- —_—_A. (3.2
ing collapse to a black hole just requires the appropriate u
choice for these functions. In this paper the energy function
is chosen such that The coordinate system is now transformed frotr) to
u(t,r),r(r)] using the relations
f(r)<0 for r<ryg, (2.10 Luct.r).r(r)] 9

1 _
f(r)=0 for r>ry, (2.11) du=—(dt—Adr), dr=dr, 33

for somer,. This means that when a perturbation is applied h
to the background dust, all the matter interior gowill even- where
tually collapse to form a black hole, while the exterior matter
will expand forever as in a flat Friedmann univef26]. The w=_ (3.4)
mass functionm(r) is determined by puttingR=r at t u
=t4(r) in Eq. (2.5.

The key to this approximation is that the back reaction ofThe partial derivatives are then related by
the scalar field is neglected. It is assumed that the effect of
the scalar field on the spacetime is small compared to that of 1
the matter. The initial configuration used is the general rela- Hh= 0 H== 0t (3.9
tivistic one with constanty and for simplicity Brans-Dicke
theory is used. Then, to the lowest order, the evolutio@of |n this coordinate system the metric becomes
is determined by the wave equation:

8 ds?= — a2du?—2aA(u,r)dudr+R%(u,r)[d6?
C —
[VVelred= 555 Trs: (212 +sin? ady?]. (3.6
where [V°V,]tg and T1g are determined for the Tolman- To use the characteristic method it is necessary to intro-

Bondi metric and the general relativistic solution. Using theduce the derivative along the ingoing radial null geodesic. In
Tolman-Bondi metric, the wave operator is given by the original coordinates the ingoing null geodesic is given by
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dt A 3
a — T\ ( 7)
which in the new coordinate system becomes
d?_ a g
TN (3.9
Therefore the derivative along the ingoing null can be ob-
tained:
d _dr _af 1 -
PR Tl Ak (3.9

The partial derivatives); and d, can now be rewritten in
terms ofd/du and d,

o 1d 11 3
= quTa A% (3.10
_ Ad 1 a1
== qu 2% (3.1
The wave operator then becomes
VoV ] = do A o Mlar X
[VVelé=—— R qu R ar AR =] |4
(3.12
where
¢=d(Ra). (3.13

Here the dot and prime refer to the operators given in Eq
(3.10 and(3.11), respectively. It is also necessary to obtain
an equation fora. This is achieved by usinguj’=(u’)",
which gives

dra=Aa. (3.149

Applying the full Tolman-Bondi solution, the basic equa-

tions that must be solved in Brans-Dicke theory are to first

order
de a J1+f f’ R” a F F’
du" 2 R \2(1+H) Rr/® 2RyTifl2F
R’ a 1 F’ 3.1
R ¢+53+2w RJ1+f' (319
@ 1 F' FR’
Jra=*+— ———+f ],
2 F R R2
(1+f)| =+f
R
(3.1
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is also convenient to take the parametrized form of the
Tolman-Bondi solution. Fof =0, Ris given by

oF 1/3
Rz(T) [t—ts(r)]%". (3.17)
For >0, it is given by
F
R= —(coshy—1), (3.18
2f
oo
t—tg(r)= Fm(smhn— 7). (3.19
For <O, it is given by
S 3.2
R—m(l—cosn), (3.20
F .
t—ts(r)= 2(_—f)3/2(77—5|n 7]). (32])

Here the signs are chosen so that they correspond to the big
bang universe.

IV. MODELS

We choose the background primordial black hole model
so that the following conditions are satisfigd) The big
bang occurs at the same time everywhere,ti;ér) =0 (con-
stan}. (2) The model is asymptotically flat Friedmann and
compensatedi.e., the overdense region in the center is sur-
rounded by an underdense region outside in such a way that
he total mass at infinity is unaffected3) The model is free
of shell-focusing or shell-crossing naked singularities, at
least within the calculated regiof4) The central region is
bound, while the asymptotic region is marginally bou(j.

At the initial time t=t,, the conditionR’>0 is satisfied
everywhere.

In order to satisfy the above conditions, we sett, and
hoose the energy functidi{r) to have the form

:
ol

wherer gives the curvature radius in the central closed
Friedmann region and,, gives the scale of the overdense
region. Equatior{4.1) means that the central regior<r,, is
described by the exact closed Friedmann solution, which en-
sures that there is no shell-focusing naked singularity. More
general situations in which shell-focusing is avoided have
been discussed elsewhdl]. The code continually moni-
tors for shell-crossing to check that this never happens within

C

r

- = for r<r,,,
rC
r
r

(= r—r

4
) ) for r=r,,,
C rW

4.1

where the upper and lower signs correspond to an expandirtfe calculated region. We then determiag) so thatr co-

and collapsing phase respectively. For numerical purposes

imcides withR at thet=t, spacelike hypersurface.
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TABLE |. Parameters for models.

Models f Hor ¢ Holw Initial data
A 4.9 2 1.25 be
B 4.9 2 1 be
C 4.9 3 1.25 be
D 4.9 2 1.25 b
E 4.9 2 1.25 ¢
F 4.2 2 3 b

The choice of the functiof(r) requires some justification

since it is nowhere exactly zero in the calculated region, so
strictly speaking the entire region would eventually collapse
to a black hole if one waited long enough. In practice, this
does not matter because our calculated region is so large the

the value off is effectively identical to O for =5r, (i.e., at
the outer boundapy Since the region is finite, we can there-

fore always make the matching to the Einstein—de Sitter uni-

verseoutsidethe calculated region. It would be easy in prin-
ciple to perform the calculations for a situation in which the
matching occurswithin the calculated regiori.e., with f
=0 exactly at the edge of the regiorit is clear that this
would make no qualitative difference to our conclusions but
to confirm this, we also adopt the choice

et

in which the compensation is satisfied explicitly within the
calculated region.
Before integrating, we have to fix the initial data feér

r 4

le

for r<r,,,

f(r)= (4.2

0 for r=r,,
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FIG. 2. Trajectories of outgoing null rays are plottéal for
models A, D, E(b) for model B,(c) for model C, andd) for model
F.

One can take this to be the homogeneous cosmological so-

lution given by

4 t
= 1+ ——=In—|. 4.3
=Pl 1+ 3024 3 to) “3
01 —— 0.2
0
01l | ( ADE — £48
i (B: e
021 F— 01t
03}
- -04Ff © 005}
05 | i1
06 | of
0.7 |
-0.05 |
0.8 | 1
(a) |
....... PV, o

-0.1 —
012345678910

Hyr Hyr

FIG. 1. (a) Energy functionf and(b) initial density perturbation
6 are plotted for models A—F.

We then set the initial null hypersurface as the null cone
whose vertex is att(r)=(ty,0) and regard the cosmological
solution as the initial data on this hypersurface. Although the
value of the scalar field at the cosmological particle horizon
must be given by this solution, the value in the perturbed
region and the surrounding region may be different from this.
To examine the sensitivity of the results to this alteration, we
consider another form of the initial data which is different
from the cosmological solution in the regians(1-10)

Xty. We now choose
t 2
-+ —_ —
o (g |

so that we have an ingoing wave in the perturbed region, and
examine the evolution of the scalar field thereafter. The nu-
merical code has been checked by the following nontrivial

test calculation. In the flat Friedmann universe, the code
must reproduce the cosmological evolution E4.3) from

the initial data. There is agreement to within 0.05% accuracy.

b= (4.4

V. RESULTS

We denote the Hubble parameter in the Friedmann back-
ground(far from the perturbed regigrasH, att=t,. Recall
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black hole singularity 1.6 — 1.6 -
_______ i+ S S
, event horizon 15 : 1 151
'/' 14} ; 14
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initial null s " —| 2 i Ju—
Cauchy surface 11t 1£ --—~ 14+ 1£ —-—-:
. 200 === - 1) e —
9. — 9. —
0 1 1
1
initial singularity 0.9 . . . @ 09 \ . . (,d )
0 100 200 300 400 0 100 200 300 400
FIG. 3. Penrose diagram of a primordial black hole in a flat HoR HoR
Friedmann universe. Also depicted is the null Cauchy surface on
; i S ! i 1.6 — — 16 .
which the initial conditions are set for the numerical calculations. R —
15 = ] 15F
thatr gives the amplitude of the density perturbation, while
ry gives the size of the perturbed region. For superhorizon 1.4 : 14 1
scale perturbations, we cannot set the density perturbation tc . i
be very large else the overdense region closes up on itsel 13 \ 13 l
and becomes disconnected from the rest of the unij@ise § £
Actually, the requiremenR’>0 imposes an even stronger 127 =10 1 125 =10 ]
condition since it implies,,<r.. We have set the Brans- B S :
Dicke parameter to b@=5. If r. is much increased, then | 20 -]
the amplitude of the overdensity is much decreased and the : e
resulting black hole becomes very small compared with the ! !
horizon scale at the formation time.rf is much decreased, 09 , , , (,b) 09 L . (,e)
the overdense region becomes a separate closed univers o 100 200 300 400 0 100 200 300 400
Models and parameters are summarized in Table |. The dif- HoR HoR
ference between models A, B, C, and F is in the choice of the —_— 16
background perturbation. The difference between models A, 16 ]
D, and E is in the choice of the initial condition for the scalar \ 15 F
field. A change ofw only scales the variation of the scalar 15k 1
field from ¢, as indicated by Eq4.3). i 1 e
1.7 T T ] 13
1.6 ¢ 12} 12 i S—
151 11} 11 - —
14+ 1 1
() ()
$ 13 0 100 20 w0 w0 e mw ow w0
HoR HoR
12t
FIG. 5. Configuration of the scalar field at each moment
1.1 |/ =const is plotted for model®) A, (b) B, (c) C, (d) D, (e) E, and(f)
F. For comparison, the cosmological valge at each moment is
1 also plotted as a horizontal line.
09 i 10 100 In Fig. 1, the energy functiof(r) and the initial density
Hyt perturbation
FIG. 4. Initial null Cauchy data sets for the scalar fief: for
models A, B, C, and Fg_. for model D; and¢_ for model E. For S(tg,r)= p(to.r)—p(to,*) (5.1)

clarity, the abscissa is plotted logarithmically. p(tg,)
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1.7
1.7 7
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1 ] 1 ] ; (c) )
, . ] ,
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0.9 - - - - 05 . . - Hot i
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Hy
Ho FIG. 7. Time evolution of the scalar field on the event horizon is

FIG. 6. Time variation of the scalar field along the world-lines Plotted for modelsa) A, (b) B, (c) C, (d) D, (¢) E, and(f) F. For
of constanR is plotted for modelga) A, (b) B, (c) C, (d) D, (e) E, comparison, the cosmological evolutign is also plotted.
and (f) F. For comparison, the cosmological evolutignp is also
plotted. A and closer to 106, " in the other cases. The initial data

for the scalar field are set on the initial null Cauchy surface

are plotted. The trajectories of outgoing null geodesics ar@see Fig. 3. We prepare three sets of initial dath,, ¢, and
plotted in Fig. 2. It is seen that a nearly horizon-scale blacks_ | and these are plotted in Fig. 4. We have investigated all
hole is formed for model A, while the black hole is smaller the models listed in Table | and the results are seen in Figs.
than the horizon scale for models B, C, and F. This is be5—7. In Fig. 5, the profile of the scalar field is plotted for
cause the size of the black hole is always roughl 26, constant. In Fig. 6, it is plotted for constarR. The reason
whereas the time at which it forms is aboulH@l in model  why some of the curves come to an abrupt &etbwsome
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value of R is that the event horizon has formed near the VI. SUMMARY

center and we did not calculate the evolution of the scalar . .

field inside the event horizon. The reason why some of them We hgve calculated the evo!ut|on .Of the Brans-Dicke sca-
come to an abrupt enabovesome value oR is due to the lar field in the presence of a primordial black hole formed in
finiteness of the region in which the numerical calculation is® flat Friedmann background. We have found that the value

done. of the scalar field at the event horizon almost always main-

We note that collapse ensures that the scalar field is initains the cosmological value. This suggests that primordial
tially concentrated in the central regions and this means thdtlack holes “forget” the value of the gravitational constant at
it rises above the asymptotic cosmological value everywherédheir formation epoch. In this sense, we confirm the result of
However, this central concentration tends to fall due to thelacobsen8], although he never carried out an explicit evo-
underdensity surrounding the black hole. This effect, coupledutionary calculation. While it is possible that some choices
with the increase of the cosmological value, means that thef the functionf(r) might lead to a different conclusion, we
scalar field necessarily falls below the cosmological value atvould claim that our conclusion must at least hold in com-
sufficiently large values oR, at least for the models under pensated models. For we have tried many sets of parameters,
consideration. Eventually it may do so at every plotted valueorresponding to models which describe a wide variety of
of R. Strictly speaking, the issue of gravitational memory isphysical situations, and this always seems to be the case.
concerned with the process whereby the scalar fietdiggd ~ However, it is not clear from our analysis what would hap-
to the Cosmological Va.lue once |t ha.S fa.”en beIOW |t ra.therpen for noncompensated models and we have also avoided
than with the process whereby it initialfglls to the cosmo-  mggels with shell-crossing singularities, so we do not claim
logical value. , , _ that our result is completely general.

Generally, the configuration of the scalar field tends 10 |; should also be stressed that this result has only been
spatial homogeneity with increasing time and the value oyemonstrated for a dust universe in which the scalar field
the scalar field around the black hole follows the cosmologiyyges not appreciably affect the background curvature and it
cal evolution of the scalar field at each moment. To see thi$omains to be seen whether the same conclusion applies
more clearly, we identify the value of the scalar field on the,;nen this assumption is dropped. As can be seen from Figs.
latest null ray within the calculation as the value on the blackg 5 6, both the radial gradient and the time derivative of

hole event horizongg,, because the null ray is very close 4re |arge at early times and both of these act as source terms
to the event horizon for each modeit least forHot<300,  j, the field equations. However, as longass large, this is

see Fig. 2 Both ¢ and¢g, are plotted in Fig. 7. The end of pjikely to stop the scalar field becoming homogeneous
the curvedg,, corresponds to the formation time of the eventeyentually, since it is clear that both the radial gradient and
horizon. We can see thakgy follows the evolution ofe.  time derivative become small well after the initial collapse.

There is a small deviation opgy from ¢ but this can be  Neglecting the back reaction should therefore be a reason-
explained by the central overdensity and the surrounding Ungple assumption in this situation, so gravitational memory

derdensity. FoHqt=<100, the event horizon runs through the seems unlikely. However, this conclusion might not apply for
overdense region and hence the scalar field tends to be arg-—q

plified compared withp.. Thereafter the event horizon runs
through the underdense region and so the scalar field tends to
be reduced compared with.. The overall evolution oty

is well described byp..

Although there are minor differences among the models, We would like to thank T. Nakamura for helpful discus-
we can conclude that the configuration of the scalar field ision. T.H. is supported by the Grant-in-Aio. 05540 from
nearly spatially homogeneous and well described by the coghe Japanese Ministry of Education, Culture, Sports, Science
mological solutioneg,., at least for around ten initial Hubble and Technology. C.G. is supported by the UK Particle Phys-
times after the formation of the event horizon. ics & Astronomy Research Council.
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