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Tolman-Bondi collapse in scalar-tensor theories as a probe of gravitational memory
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In cosmological models with a varying gravitational constant, it is not clear whether primordial black holes
preserve the value ofG at their formation epoch. We investigate this question by using the Tolman-Bondi
model to study the evolution of a background scalar field when a black hole forms from the collapse of dust in
a flat Friedmann universe. Providing the back reaction of the scalar field on the metric can be neglected, we
find that the value of the scalar field at the event horizon very quickly assumes the background cosmological
value. This suggests that there is very little gravitational memory.
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I. INTRODUCTION

Scalar-tensor~ST! theories of gravity provide a natura
alternative to general relativity~GR!. They describe gravity
with not only a metricgab but also a scalar fieldf. Deriva-
tives off appear as source terms in the field equations anf
itself satisfies a wave equation. The strength of the grav
tional coupling is determined by the functionv(f), where
GR is recovered in the limitsv→` andv23(dv/df)→0.

ST theories can also be regarded as being equivalen
GR with a varying gravitational ‘‘constant’’G. The most
simple example of such a ST theory is Brans-Dicke the
@1#, wherev(f) is constant andG}f21. However, weak
field experiments have shown thatv.500 @2# and so the
deviation from GR is small. For more general ST theori
where v is not constant, it is possible thatv was much
smaller at earlier times. So observations allow such theo
to greatly deviate from GR in the early universe.

There has been a renewed interest in ST theories in re
years due to the effective low energy actions of string the
involving one or more scalar fields. These scalar fields e
the field equations in much the same way as the scalar
in ST theories@3#. Also, the increasing popularity of inflatio
and quintessence suggests that scalar fields might need
incorporated into cosmological models.

The purpose of this paper is to study the effect of
evolving scalar field on the formation and evolution of
primordial black hole. In an asymptotically flat spacetime
is well known that a black hole radiates away any inhom
geneities in the scalar field until it becomes a stationary
lution with constantf @4#. This is a consequence of th
famous ‘‘no hair’’ theorem. However, in ST cosmologic
models the scalar field is evolving with time and this wou
modify how the black hole evolves during its lifetime.

Barrow @5# was the first to examine this problem. He co
sidered the two extreme possibilities: scenario~A!, where the
scalar field evolves everywhere homogeneously in the s
way as the cosmological background; and scenario~B!,
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where the black hole forces the scalar field to remain c
stant in some local region around it. The second scen
Barrow called gravitational memory because the black h
would locally preserve the value of the scalar field fro
when it formed. Barrow and Carr@6# studied the evolution of
primordial black holes for these scenarios and found t
either case results in a significant deviation from the us
GR analysis. They considered ST theories, whereG(f)
}f21 as in the Brans-Dicke case. Sincef increases with
cosmological time, this implies thatG(f) decreases, so
black holes would take longer to radiate away their mass
Hawking evaporation than in the GR case. In both scena
the black holes form when gravity is stronger, so the rate
evaporation is less, but in scenario~B! the strength never
decreases and so the lifetime is even longer.

The above scenarios are the two extremes and the re
is probably somewhere in between. Two more general s
narios have been proposed@7#. In scenario~C! the scalar
field evolves faster at the event horizon~EH! than at the
particle horizon~PH!, so ḟEH.ḟPH . Eventually the black
hole must reach a stage whereḟEH5ḟPH , but this does not
necessarily mean the scalar field is homogeneous since
could be some lag between the asymptotic and local
crease. In scenario~D!, the scalar field is evolving locally bu
at a slower rate than asymptotically, soḟEH,ḟPH . There is
still some gravitational memory but not in the strict sense
scenario~B!. In this scenario the gradient of the scalar field
increasing but one would expect there to be some limit, d
to the influx of scalar gravitational waves.

Gravitational memory for black holes which are sm
compared to the cosmological scale~i.e., the particle hori-
zon! has already been investigated by Jacobson@8#. In this
case, the scalar field evolution can be considered as
asymptotic perturbation to the Schwarzschild metric and
end-state of scenario~C! applies, with the lag being found to
be small. This suggests that gravitational memory is virtua
nonexistent. However, this approximation may not apply
primordial black holes since these can have a size com
rable to the particle horizon at formation@9#. It is still not
clear what would happen in this case. Therefore another
©2002 The American Physical Society23-1
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of investigating gravitational memory, without assuming th
the black hole is small, is needed.

In GR there have been several attempts to study ana
solutions which represent black holes within a cosmolog
background. The earliest used the Einstein-Straus solu
@10#, which matches a Schwarzschild interior to a Friedma
exterior, and this approach has also been used to study g
tational memory@11#. However, in most circumstances it ca
be shown@12# that such a matching is only possible if th
scalar field is constant, which just gives the GR soluti
Another method used the McVittie metric@13#, but it has
been shown@14# that this has a scalar curvature singularity
the event horizon.

A more successful method uses the Tolman-Bondi me
@15# to represent the collapse of dust to a black hole in
asymptotically Friedmann background. However, this o
works for dust and cannot in general be applied to ST th
ries due to the derivatives of the scalar field appearing
source terms in the field equations. In this paper we ov
come this problem by assuming that the effect of the sc
field on the spacetime is small compared to that of the m
ter. This means that we can use the usual Einstein field e
tions to generate the spacetime and then use the wave e
tion for the scalar field to determine its evolution. Th
approximation was used by Haradaet al. @16# to calculate
the scalar gravitational radiation emitted by Oppenheim
Snyder collapse in ST theory. Jacobson also uses this
proximation when calculating the effect of an evolving sca
field in Schwarzschild spacetime. We note, however, t
self-consistent numerical calculations of spherical grav
tional collapse in ST theory in asymptotically flat spacetim
in which the effect of the scalar field on the spacetime
fully incorporated, have been considered by previous auth
@17,18#.

If one makes this approximation to investigate gravi
tional collapse in a Tolman-Bondi spacetime, the solution
specified by two arbitrary functions: the energy and m
functions. To represent collapse in a Friedmann backgrou
the energy function has to be negative within some radiur 0
and zero outside it. This results in the eventual gravitatio
collapse of all the matter withinr 0, while the matter outside
r 0 expands forever as in a flat Friedmann model. In choos
the mass function, or equivalently the density perturbati
we adopt the ‘‘compensated’’ model. This means that
overdense region in the center is surrounded by an un
dense region outside, so that the total mass at infinity
unaffected.

We solve the field equations numerically using the ch
acteristic method. This method was first applied to an in
mogeneous and dynamical background spacetime by Ig
et al. @19#. The characteristic method integrates over null h
persurfaces with the event horizon as a boundary. This me
that one never needs to calculate anything inside the b
hole, thereby avoiding any numerical problems associa
with singularities. The output of the code shows the spa
and temporal variation of the scalar field. The figures p
duced show that the initial collapse results in a large grad
in the scalar field. However, as time increases, the scalar
becomes almost homogeneous. This suggests that, withi
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approximation used, gravitational memory is not possible
remains to be seen whether the back reaction of the sc
field could alter this conclusion.

In Sec. II we describe ST theories in more detail a
derive the field equations for the approximation in which t
effect of the scalar field on the metric is neglected. In Sec.
we transform the Tolman-Bondi solution into null coord
nates, giving the equations necessary to apply the chara
istic method. In Sec. IV we specify the model giving rise
black hole formation. We present the numerical results
Sec. V and discuss their implications in Sec. VI.

II. BASIC EQUATIONS

For scalar-tensor theories of gravity withG(f)}f21 the
field equations are

Gab5
8p

f
Tab1

v~f!

f2 S ]af]af2
1

2
gabf

cfcD
1

1

f
~¹a¹bf2gab¹

c¹cf!, ~2.1!

¹c¹cf5
8pT2~dv/df!]cf]cf

312v~f!
, ~2.2!

where Tab is the usual energy-momentum tensor,T is its
trace, and we have setc51. In Brans-Dicke theory Eq.~2.1!
remains unchanged butdv/df50 in Eq. ~2.2!. These equa-
tions are expressed in the Jordan frame but ST theories
also be expressed in a conformal frame known as the E
stein frame. The Einstein frame is related to the Jordan fra
by the transformation

ḡab5~G0f!gab⇒T̄ab5~G0f!21Tab , ~2.3!

whereG0 is the present value of the gravitational ‘‘constan
as measured in solar system experiments. It is called
Einstein frame because it can be expressed as GR wi
scalar field. However, the Jordan frame will be used throu
out this paper.

In GR the Tolman-Bondi solution is given by

ds252dt21A2~ t,r !dr21R2~ t,r !@du21sin2 udc2#,
~2.4!

wherer is the comoving radial coordinate andR is given by

t2ts~r !5AR3

F
GS 2

f R

F D . ~2.5!

HereG(y) is a positive function given by
3-2



G~y!5

arcsinAy

y3/2
2

A12y

y
or

p2arcsinAy

y3/2
1

A12y

y
~0,y<1!,

2

3
~y50!, ~2.6!
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ts(r ) is a constant of integration, andF(r )52G0m(r ) with
m(r ) being the mass within radiusr. A is given by

A2~ t,r !5
R8~ t,r !2

11 f ~r !
, ~2.7!

andR satisfies

Ṙ2~ t,r !5
F~r !

R
1 f ~r !. ~2.8!

The density of the dustr is given by

r5
F8

8pR2R8
. ~2.9!

In the above, a dot denotes] t and a prime denotes] r .
There are two arbitrary functions in this solution: th

mass functionm(r ) and the energy functionf (r ). Investigat-
ing collapse to a black hole just requires the appropr
choice for these functions. In this paper the energy funct
is chosen such that

f ~r !,0 for r ,r 0 , ~2.10!

f ~r !50 for r .r 0 , ~2.11!

for somer 0. This means that when a perturbation is appl
to the background dust, all the matter interior tor 0 will even-
tually collapse to form a black hole, while the exterior mat
will expand forever as in a flat Friedmann universe@20#. The
mass functionm(r ) is determined by puttingR5r at t
5ts(r ) in Eq. ~2.5!.

The key to this approximation is that the back reaction
the scalar field is neglected. It is assumed that the effec
the scalar field on the spacetime is small compared to tha
the matter. The initial configuration used is the general re
tivistic one with constantf and for simplicity Brans-Dicke
theory is used. Then, to the lowest order, the evolution of
is determined by the wave equation:

@¹c¹c#TBf5
8p

312v
TTB , ~2.12!

where @¹c¹c#TB and TTB are determined for the Tolman
Bondi metric and the general relativistic solution. Using t
Tolman-Bondi metric, the wave operator is given by
10402
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@¹c¹c#TBf52f̈2
~AR2!•

AR2
ḟ1

1

A2
f91

1

AR2 S R2

A D 8
f8.

~2.13!

III. CHARACTERISTIC METHOD

The last equation needs to be rewritten in terms of a n
coordinate suitable for the characteristic method. The
tarded time coordinateu is introduced such thatu
5constant is an outgoing null geodesic. In the original co
dinates the outgoing null geodesic is given by

dt

dr
5A, ~3.1!

so we can write

u8

u̇
52A. ~3.2!

The coordinate system is now transformed from (t,r ) to

@u(t,r ), r̄ (r )# using the relations

du5
1

a
~dt2Adr!, dr̄5dr, ~3.3!

where

a[
1

u̇
. ~3.4!

The partial derivatives are then related by

] t5
1

a
]u , ] r52

A

a
]u1] r̄ . ~3.5!

In this coordinate system the metric becomes

ds252a2du222aA~u, r̄ !dudr̄1R2~u, r̄ !@du2

1sin2 udc2#. ~3.6!

To use the characteristic method it is necessary to in
duce the derivative along the ingoing radial null geodesic
the original coordinates the ingoing null geodesic is given
3-3
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dt

dr
52A, ~3.7!

which in the new coordinate system becomes

dr̄

du
52

a

2A
. ~3.8!

Therefore the derivative along the ingoing null can be o
tained:

d

du
5]u1

dr̄

du
] r̄5

a

2 S ] t2
1

A
] r D . ~3.9!

The partial derivatives] t and ] r can now be rewritten in
terms ofd/du and] r̄ :

] t5
1

a

d

du
1

1

2

1

A
] r̄ , ~3.10!

] r52
A

a

d

du
1

1

2
] r̄ . ~3.11!

The wave operator then becomes

@¹c¹c#f52
2

aAR

dw

du
2

A8

A3R
w1

1

ARF ~AṘ!•2S R8

A D 8Gf,

~3.12!

where

w[] r̄~Rf!. ~3.13!

Here the dot and prime refer to the operators given in E
~3.10! and ~3.11!, respectively. It is also necessary to obta
an equation fora. This is achieved by using (u̇)85(u8)•,
which gives

] r̄a5Ȧa. ~3.14!

Applying the full Tolman-Bondi solution, the basic equ
tions that must be solved in Brans-Dicke theory are to fi
order

dw

du
5

a

2

A11 f

R8
S f 8

2~11 f !
2

R9

R8
D w1

a

2

F

RA11 f
S F8

2F

2
R8

R Df1
a

2

1

312v

F8

RA11 f
, ~3.15!

] r̄a56
a

2

1

A~11 f !S F

R
1 f D S

F8

R
2

FR8

R2
1 f 8D ,

~3.16!

where the upper and lower signs correspond to an expan
and collapsing phase respectively. For numerical purpos
10402
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is also convenient to take the parametrized form of
Tolman-Bondi solution. Forf 50, R is given by

R5S 9F

4 D 1/3

@ t2ts~r !#2/3. ~3.17!

For f .0, it is given by

R5
F

2 f
~coshh21!, ~3.18!

t2ts~r !5
F

2 f 3/2
~sinhh2h!. ~3.19!

For f ,0, it is given by

R5
F

2~2 f !
~12cosh!, ~3.20!

t2ts~r !5
F

2~2 f !3/2
~h2sinh!. ~3.21!

Here the signs are chosen so that they correspond to the
bang universe.

IV. MODELS

We choose the background primordial black hole mo
so that the following conditions are satisfied.~1! The big
bang occurs at the same time everywhere, i.e.,ts(r )50 ~con-
stant!. ~2! The model is asymptotically flat Friedmann an
compensated~i.e., the overdense region in the center is s
rounded by an underdense region outside in such a way
the total mass at infinity is unaffected!. ~3! The model is free
of shell-focusing or shell-crossing naked singularities,
least within the calculated region.~4! The central region is
bound, while the asymptotic region is marginally bound.~5!
At the initial time t5t0, the conditionR8.0 is satisfied
everywhere.

In order to satisfy the above conditions, we sett5t0 and
choose the energy functionf (r ) to have the form

f ~r !5H 2S r

r c
D 2

for r ,r w ,

2S r

r c
D 2

expS 2S r 2r w

r w
D 4D for r>r w ,

~4.1!

where r c gives the curvature radius in the central clos
Friedmann region andr w gives the scale of the overdens
region. Equation~4.1! means that the central regionr ,r w is
described by the exact closed Friedmann solution, which
sures that there is no shell-focusing naked singularity. M
general situations in which shell-focusing is avoided ha
been discussed elsewhere@21#. The code continually moni-
tors for shell-crossing to check that this never happens wi
the calculated region. We then determineF(r ) so thatr co-
incides withR at thet5t0 spacelike hypersurface.
3-4
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The choice of the functionf (r ) requires some justification
since it is nowhere exactly zero in the calculated region,
strictly speaking the entire region would eventually collap
to a black hole if one waited long enough. In practice, t
does not matter because our calculated region is so large
the value off is effectively identical to 0 forr *5r w ~i.e., at
the outer boundary!. Since the region is finite, we can ther
fore always make the matching to the Einstein–de Sitter u
verseoutsidethe calculated region. It would be easy in pri
ciple to perform the calculations for a situation in which t
matching occurswithin the calculated region~i.e., with f
50 exactly at the edge of the region!. It is clear that this
would make no qualitative difference to our conclusions b
to confirm this, we also adopt the choice

f ~r !5H 2S r

r c
D 2F12S r

r w
D 4G4

for r ,r w ,

0 for r>r w ,

~4.2!

in which the compensation is satisfied explicitly within th
calculated region.

Before integrating, we have to fix the initial data forf.
One can take this to be the homogeneous cosmologica
lution given by

fc5f0S 11
1

312v

4

3
ln

t

t0
D . ~4.3!

TABLE I. Parameters for models.

Models f H0r c H0r w Initial data

A ~4.1! 2 1.25 fc

B ~4.1! 2 1 fc

C ~4.1! 3 1.25 fc

D ~4.1! 2 1.25 f1

E ~4.1! 2 1.25 f2

F ~4.2! 2 3 fc

FIG. 1. ~a! Energy functionf and~b! initial density perturbation
d are plotted for models A–F.
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We then set the initial null hypersurface as the null co
whose vertex is at (t,r )5(t0,0) and regard the cosmologica
solution as the initial data on this hypersurface. Although
value of the scalar field at the cosmological particle horiz
must be given by this solution, the value in the perturb
region and the surrounding region may be different from th
To examine the sensitivity of the results to this alteration,
consider another form of the initial data which is differe
from the cosmological solution in the regiont&(1 –10)
3t0. We now choose

f65fcF16expF2S t

5t0
D 2G G , ~4.4!

so that we have an ingoing wave in the perturbed region,
examine the evolution of the scalar field thereafter. The
merical code has been checked by the following nontriv
test calculation. In the flat Friedmann universe, the co
must reproduce the cosmological evolution Eq.~4.3! from
the initial data. There is agreement to within 0.05% accura

V. RESULTS

We denote the Hubble parameter in the Friedmann ba
ground~far from the perturbed region! asH0 at t5t0. Recall

FIG. 2. Trajectories of outgoing null rays are plotted~a! for
models A, D, E,~b! for model B,~c! for model C, and~d! for model
F.
3-5
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that r c gives the amplitude of the density perturbation, wh
r w gives the size of the perturbed region. For superhori
scale perturbations, we cannot set the density perturbatio
be very large else the overdense region closes up on i
and becomes disconnected from the rest of the universe@9#.
Actually, the requirementR8.0 imposes an even stronge
condition since it impliesr w&r c . We have set the Brans
Dicke parameter to bev55. If r c is much increased, the
the amplitude of the overdensity is much decreased and
resulting black hole becomes very small compared with
horizon scale at the formation time. Ifr c is much decreased
the overdense region becomes a separate closed univ
Models and parameters are summarized in Table I. The
ference between models A, B, C, and F is in the choice of
background perturbation. The difference between model
D, and E is in the choice of the initial condition for the sca
field. A change ofv only scales the variation of the scal
field from f0, as indicated by Eq.~4.3!.

FIG. 3. Penrose diagram of a primordial black hole in a fl
Friedmann universe. Also depicted is the null Cauchy surface
which the initial conditions are set for the numerical calculation

FIG. 4. Initial null Cauchy data sets for the scalar field:fc for
models A, B, C, and F;f1 for model D; andf2 for model E. For
clarity, the abscissa is plotted logarithmically.
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In Fig. 1, the energy functionf (r ) and the initial density
perturbation

d~ t0 ,r ![
r~ t0 ,r !2r~ t0 ,`!

r~ t0 ,`!
~5.1!

t
n

FIG. 5. Configuration of the scalar field at each moment
5const is plotted for models~a! A, ~b! B, ~c! C, ~d! D, ~e! E, and~f!
F. For comparison, the cosmological valuefc at each moment is
also plotted as a horizontal line.
3-6
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are plotted. The trajectories of outgoing null geodesics
plotted in Fig. 2. It is seen that a nearly horizon-scale bla
hole is formed for model A, while the black hole is small
than the horizon scale for models B, C, and F. This is
cause the size of the black hole is always roughly 20H0

21,
whereas the time at which it forms is about 20H0

21 in model

FIG. 6. Time variation of the scalar field along the world-lin
of constantR is plotted for models~a! A, ~b! B, ~c! C, ~d! D, ~e! E,
and ~f! F. For comparison, the cosmological evolutionfc is also
plotted.
10402
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A and closer to 100H0
21 in the other cases. The initial dat

for the scalar field are set on the initial null Cauchy surfa
~see Fig. 3!. We prepare three sets of initial data,fc , f1 and
f2 , and these are plotted in Fig. 4. We have investigated
the models listed in Table I and the results are seen in F
5–7. In Fig. 5, the profile of the scalar field is plotted f
constantt. In Fig. 6, it is plotted for constantR. The reason
why some of the curves come to an abrupt endbelowsome

FIG. 7. Time evolution of the scalar field on the event horizon
plotted for models~a! A, ~b! B, ~c! C, ~d! D, ~e! E, and~f! F. For
comparison, the cosmological evolutionfc is also plotted.
3-7
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HARADA, GOYMER, AND CARR PHYSICAL REVIEW D66, 104023 ~2002!
value of R is that the event horizon has formed near t
center and we did not calculate the evolution of the sca
field inside the event horizon. The reason why some of th
come to an abrupt endabovesome value ofR is due to the
finiteness of the region in which the numerical calculation
done.

We note that collapse ensures that the scalar field is
tially concentrated in the central regions and this means
it rises above the asymptotic cosmological value everywh
However, this central concentration tends to fall due to
underdensity surrounding the black hole. This effect, coup
with the increase of the cosmological value, means that
scalar field necessarily falls below the cosmological value
sufficiently large values ofR, at least for the models unde
consideration. Eventually it may do so at every plotted va
of R. Strictly speaking, the issue of gravitational memory
concerned with the process whereby the scalar field israised
to the cosmological value once it has fallen below it rath
than with the process whereby it initiallyfalls to the cosmo-
logical value.

Generally, the configuration of the scalar field tends
spatial homogeneity with increasing time and the value
the scalar field around the black hole follows the cosmolo
cal evolution of the scalar field at each moment. To see
more clearly, we identify the value of the scalar field on t
latest null ray within the calculation as the value on the bla
hole event horizon,fBH , because the null ray is very clos
to the event horizon for each model~at least forH0t&300,
see Fig. 2!. Bothfc andfBH are plotted in Fig. 7. The end o
the curvefBH corresponds to the formation time of the eve
horizon. We can see thatfBH follows the evolution offc .
There is a small deviation offBH from fc but this can be
explained by the central overdensity and the surrounding
derdensity. ForH0t&100, the event horizon runs through th
overdense region and hence the scalar field tends to be
plified compared withfc . Thereafter the event horizon run
through the underdense region and so the scalar field ten
be reduced compared withfc . The overall evolution offBH
is well described byfc .

Although there are minor differences among the mod
we can conclude that the configuration of the scalar field
nearly spatially homogeneous and well described by the
mological solutionfc , at least for around ten initial Hubbl
times after the formation of the event horizon.
s
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VI. SUMMARY

We have calculated the evolution of the Brans-Dicke s
lar field in the presence of a primordial black hole formed
a flat Friedmann background. We have found that the va
of the scalar field at the event horizon almost always ma
tains the cosmological value. This suggests that primor
black holes ‘‘forget’’ the value of the gravitational constant
their formation epoch. In this sense, we confirm the resul
Jacobsen@8#, although he never carried out an explicit ev
lutionary calculation. While it is possible that some choic
of the functionf (r ) might lead to a different conclusion, w
would claim that our conclusion must at least hold in co
pensated models. For we have tried many sets of parame
corresponding to models which describe a wide variety
physical situations, and this always seems to be the c
However, it is not clear from our analysis what would ha
pen for noncompensated models and we have also avo
models with shell-crossing singularities, so we do not cla
that our result is completely general.

It should also be stressed that this result has only b
demonstrated for a dust universe in which the scalar fi
does not appreciably affect the background curvature an
remains to be seen whether the same conclusion ap
when this assumption is dropped. As can be seen from F
5 and 6, both the radial gradient and the time derivative of
are large at early times and both of these act as source t
in the field equations. However, as long asv is large, this is
unlikely to stop the scalar field becoming homogeneo
eventually, since it is clear that both the radial gradient a
time derivative become small well after the initial collaps
Neglecting the back reaction should therefore be a reas
able assumption in this situation, so gravitational mem
seems unlikely. However, this conclusion might not apply
v'1.
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